Predicting a class label using naïve Bayes classification:

We wish to predict the class label of a tuple using naïve Bayesian classification, given the training data and frequency of occurrence to calculate conditional probabilities. The data tuples are described the attributes age, income, student, and credit_rating. The class label attribute, buys_computer, has two distinct values, namely \{yes, no\}. Let C1 correspond to the class buys computer = yes and C2 correspond to buys_computer $=$ no. The tuple we wish to classify is:
$X=$ (age $=$ youth, income $=$ medium, student $=$ yes, credit_rating $=$ fair $)$
We need to maximize $\mathrm{P}(\mathrm{X} \mid \mathrm{Ci}) \mathrm{P}(\mathrm{Ci})$, for $\mathrm{i}=1,2$. $\mathrm{P}(\mathrm{Ci})$, the prior probability of each class, can be computed based on the training tuples:
$P($ buys_computer $=$ yes $)=9 / 14=0.643$
$P($ buys_computer $=$ no $)=5 / 14=0.357$
To compute ($\mathrm{PX} \mid \mathrm{Ci}$), for $\mathrm{i}=1,2$, we compute the following conditional probabilities (which come from simply counting the occurrences of the conditions in the dataset, thereby estimating probability through freqency):

| $\mathrm{P}($ age = youth \| buys_computer = yes) | $=2 / 9=0.222$ |
| :--- | :--- | :--- |
| $\mathrm{P}($ age = youth \| buys_computer = no $)$ | $=3 / 5=0.600$ |
| $\mathrm{P}($ (income = medium \| buys_computer = yes) | $=4 / 9=0.444$ |
| $\mathrm{P}($ income = medium \| buys_computer = no $)$ | $=2 / 5=0.400$ |
| $\mathrm{P}($ student = yes \| buys_computer = yes) | $=6 / 9=0.667$ |
| $\mathrm{P}($ student = yes \| buys_computer = no $)$ | $=1 / 5=0.200$ |
| $\mathrm{P}($ credit_rating $=$ fair \| buys_computer = yes) | $=6 / 9=0.667$ |
| $\mathrm{P}($ credit_rating $=$ fair \mid buys_computer $=$ ne $)$ | $=2 / 5=0.400$ |

Using these probabilities, we obtain:

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \mid \text { buys_computer = yes }) \quad=\quad & P(\text { age }=\text { youth | buys_computer }=\text { yes }) \\
& * P(\text { income }=\text { medium | buys_computer }=\text { yes }) \\
& * P(\text { student }=\text { yes } \mid \text { buys_computer }=\text { yes }) \\
& * P(\text { credit_rating }=\text { fair } \mid \text { buys_computer }=\text { yes }) \\
= & 0.222 * 0.444 * 0.667 * 0.667=0.044
\end{aligned}
$$

Similarly,

$$
\mathrm{P}(\mathrm{X} \mid \text { buys_computer }=\mathrm{no})=0.600 * 0.400 * 0.200 * 0.400=0.019
$$

To find the class, Ci , that maximizes $\mathrm{P}(\mathrm{X} \mid \mathrm{Ci}) \mathrm{P}(\mathrm{Ci})$, we compute

```
P(X | buys_computer = yes)* P(buys_computer = yes) = 0.444* 0.643 = 0.028
P(X | buys_computer = no) * P(buys_computer = no) =0.019*0.357 = 0.007
```

These numbers can now be normalized to represent probability, but since order will be maintained, we can simply choose the maximum, or, predict the buys_computer = yes for tuple X .

What if I encounter probability values of 0 ?

There is a simple trick to avoid this problem. We can assume that our training database, D, is so large that adding one to each count that we need would only make a negligible difference in the estimated probability value, yet would conveniently avoid the case of probability values of 0 . This technique for probability estimation is known as the Laplacian correction or Laplace estimator.

Suppose that for the class buys_computer = yes in some training database D, containing 1000 tuples, we have 0 tuples with income = low, 990 tuples with income = medium, and 10 tuples with income $=$ high. The probabilities of these events, without the Laplacian correction are $0,0.990$ (from 990/1000), and 0.010 (from 10/1000), respectively. Using the Laplacian correction for the three quantities, we pretend that we have one more tuple for each income-value pair. In this way, we instead obtain the following probabilities:
$1 / 1003=0.001,991 / 1003=0.988$, and $11 / 1003=0.011$
The "corrected" probability estimates are close to their "uncorrected" counterparts, yet the zero probability value is avoided.

